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Machine learning aids in simulating
dynamics of interacting atoms
February 23, 2021

LOS ALAMOS, N.M., Feb. 23, 2021—A revolutionary machine-learning (ML) approach
to simulate the motions of atoms in materials such as aluminum is described in this
week’s Nature Communications journal. This automated approach to “interatomic
potential development” could transform the field of computational materials discovery.

“This approach promises to be an important building block for the study of materials
damage and aging from first principles,” said project lead Justin Smith of Los Alamos
National Laboratory. “Simulating the dynamics of interacting atoms is a cornerstone of
understanding and developing new materials. Machine learning methods are providing
computational scientists new tools to accurately and efficiently conduct these atomistic
simulations. Machine learning models like this are designed to emulate the results of
highly accurate quantum simulations, at a small fraction of the computational cost.”

To maximize the general accuracy of these machine learning models, he said, it is
essential to design a highly diverse dataset from which to train the model. A challenge
is that it is not obvious, a priori, what training data will be most needed by the ML model.
The team’s recent work presents an automated “active learning” methodology for
iteratively building a training dataset.

At each iteration, the method uses the current-best machine learning model to perform
atomistic simulations; when new physical situations are encountered that are beyond
the ML model’s knowledge, new reference data is collected via expensive quantum
simulations, and the ML model is retrained. Through this process, the active learning
procedure collects data regarding many different types of atomic configurations,
including a variety of crystal structures, and a variety of defect patterns appearing within
crystals.

The paper: Automated discovery of a robust interatomic potential for aluminum, Nature
Communications, DOI: 10.1038/s41467-021-21376-0
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